如图,为平面的一组基向量,,,与交与点(1)求关于的分解式;(2)设,,求;(3)过任作直线交直线于两点,设,()求的关系式。
数列满足,().(1)设,求数列的通项公式;(2)设,数列的前项和为,求出并由此证明:<.
如图,在四棱锥中,侧棱⊥底面,,,,,是棱的中点.(1)求证:面;(2)设点是线段上的一点,且在方向上的射影为,记与面所成的角为,问:为何值时,取最大值?
在三角形中,,,的对边分别为,,,且(1)求;(2)若,求的取值范围.
设函数,(1)若函数在处与直线相切;①求实数,的值;②求函数上的最大值;(2)当时,若不等式对所有的,都成立,求实数的取值范围.
已知函数的定义域,若在上为增函数,则称为“一阶比增函数”;若在上为增函数,则称为“二阶比增函数”。把所有由“一阶比增函数”组成的集合记为,把所有由“二阶比增函数”组成的集合记为.(1)已知函数,若且,求实数的取值范围;(2)已知,且存在常数,使得对任意的,都有,求的最小值.