某足球联赛记分规则为胜一场积3分, 平一场积1分, 负一场积0分. 当比赛进行到14轮结束时,甲队积分28分. 判断甲队胜, 平, 负各几场, 并说明理由.
(1)计算:-32+(1-π)0+(-)-2; (2)因式分解:3x2y-18xy2+27y3.
如图,点A(-2,5)和点B(-5,a)在反比例函数y=的图象上,直线y=x+b分别交x轴的正半轴于点D,交y轴的负半轴于点C,且AB=CD.二次函数的图象经过A、C、D三点.(1)求a、k的值及直线AB的函数表达式;(2)求点C、D的坐标及二次函数的表达式;(3)如果点E在第四象限的二次函数图象上,且∠OCE=∠BDC,求点E的坐标.
如图,在矩形ABCD中,AB=9,AD=12.动点E从点B出发,沿线段BC(不包括端点B、C)以每秒2个单位长度的速度,匀速向点C运动;动点F从点C出发,沿线段CD(不包括端点C、D)以每秒1个单位长度的速度,匀速向点D运动;点E、F同时出发,同时停止.连接AF并延长交BC的延长线于点M,再把AM沿AD翻折交CD延长线于点N,连接MN.设运动时间为t秒.(1)当t为何值时,△ABE∽△ECF;(2)在点E运动的过程中是否存在某个时刻使AE⊥AN?若存在请求出t的值,若不存在请说明理由;(3)在运动的过程中,△AMN的面积是否变化?如果改变,求出变化的范围;如果不变,求出它的值.
在奉贤创建文明城区的活动中,有两段长度相等的彩色道砖铺设任务,分别交给甲、乙两个施工队同时进行施工.如图是反映所铺设彩色道砖的长度y(米)与施工时间x(时)之间关系的部分图象.请解答下列问题:(1)求乙队在2≤x≤6的时段内,y与x之间的函数关系式;(2)如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/时,结果两队同时完成了任务.求甲队从开始施工到完工所铺设的彩色道砖的长度为多少米?
如图,已知AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,∠M=∠D.(1)判断BC、MD的位置关系,并说明理由;(2)若AE=16,BE=4,求线段CD的长;(3)若MD恰好经过圆心O,求∠D的度数.