设函数=x+ax2+blnx,曲线y=过P(1,0),且在P点处的切斜线率为2.(1)求a,b的值;(2)证明:≤2x-2.
定义在R上的单调函数f(x)满足f(3)=log3且对任意x,y∈R都有f(x+y)=f(x)+f(y).(1)求证f(x)为奇函数;(2)若f(k·3)+f(3-9-2)<0对任意x∈R恒成立,求实数k的取值范围.
设关于x的函数f(x)=-1-2a+2cos2x-2acosx的最小值为g(a).(1)写出g(a)的表达式;(2)当时,求a的值,并求此时f(x)的最大值。
已知幂函数为偶函数且在区间(0,+∞)上是单调递减函数。(1)求函数f(x)的解析式;(2)讨论函数的奇偶性。(10分)
(本小题满分12分) 定义在D上的函数,如果满足:对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界.已知函数;.(1) 当a=1时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;(2)若函数在上是以3为上界的有界函数,求实数a的取值范围;(3)若,函数在上的上界是,求的取值范围.
(本小题满分12分) 定义在R上的函数满足:对任意实数m,n,总有,且当时,.(1)试求的值;(2)判断的单调性并证明你的结论;(3)若不等式对恒成立,求实数x的取值范围.