某出租车从停车场出发,沿着东西向的大街行驶,到晚上6时,一天的行驶记录如下:(向东行驶记为正,向西行驶记为负,单位:千米)-4、+7、-9、+8、+6、-4、-3、+12(1)到晚上6时,出租车在什么位置?(2)若汽车每千米耗油0.2升,则从停车场出发到晚上6时,出租车共耗油多少升?
如图,在Rt△ACB中,∠C=90°,CD⊥AB,垂足为点D. (1)写出图中的三对相似三角形,并选择其中一对进行证明; (2)如果AC=6,BC=8,求AD的长.
如图,河流两岸a、b互相平行,点A、B是河岸a上的两座建筑物,点C、D是河岸b上的两点,A、B的距离约为200米.某人在河岸b上的点P处测得∠APC=75°,∠BPD=30°,则河流的宽度约为米.
如图,将一个Rt△ABC形状的楔子从木桩的底端点P沿水平方向打入木桩底下,使木桩向上运动.已知楔子斜面的倾斜角为15°,若楔子沿水平方向前进6cm(如箭头所示),则木桩上升了()
如图,△OAB是边长为2的等边三角形,过点A的直线与x轴交于点E . (1)求点E的坐标; (2)求过 A、O、E三点的抛物线解析式; (3)若点P是(2)中求出的抛物线AE段上一动点(不与A、E重合),设四边形OAPE的面积为S,求S的最大值.
如图,△ABC是等腰三角形,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为E,ED的延长线与AC的延长线交于点F. (1)求证:DE是⊙O的切线; (2)若⊙O的半径为2,BE=1,求cosA的值.