解不等式组,并用数轴表示其解集。
(本题10分)某农业观光园计划将一块面积为900m2的园圃分成A,B,C三个区域,分别种植甲、乙、丙三种花卉,且每平方米栽种甲3株或乙6株或丙12株。已知B区域面积是A的2倍,设A区域面积为。(1)求该园圃栽种的花卉总株数关于的函数表达式;(2)若三种花卉共栽种6600株,则A,B,C三个区域的面积分别是多少?(3)已知三种花卉的单价(都是整数)之和为45元,且差价均不超过10元,在(2)的前提下,全部栽种共需84000元,请写出甲、乙、丙三种花卉中,种植面积最大的花卉总价。
(本题10分)如图,AB是半圆O的直径,CD⊥AB于点C,交半圆于点E, DF切半圆于点F。已知∠AEF=135°。(1)求证:DF∥AB;(2)若OC=CE,BF=,求DE的长。
(本题8分)各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形。如何计算它的面积?奥地利数学家皮克(G.Pick,1859~1942)证明了格点多边形的面积公式:,其中表示多边形内部的格点数,表示多边形边界上的格点数,S表示多边形的面积。如图,,,。(1)请在图甲中画一个格点正方形,使它内部只含有4个格点,并写出它的面积;(2)请在图乙中画一个格点三角形,使它的面积为,且每条边上除顶点外无其它格点。(注:图甲、图乙在答题纸上)
(本题8分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核。甲、乙、丙各项得分如下表:
(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序;(2)该公司规定:笔试、面试、体能分分别不得低于80分、80分、70分,并按60%,30%,10%的比例计入总分。根据规定,请你说明谁将被录用。
(本题8分)如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D。(1)求证:AB=CD;(2)若AB=CF,∠B=30°,求∠D的度数。