如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上的一动点,连结OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB于点E、F,点E为垂足,连结CF.(1)当∠AOB=30°时,求弧AB的长;(2)当DE=8时,求线段EF的长;(3)在点B运动过程中,是否存在以点E、C、F为顶点的三角形与△AOB相似,若存在,请求出此时点E的坐标;若不存在,请说明理由.
如图,在平面直角坐标系xOy中,抛物线过点,这条抛物线的对称轴与x轴交于点C,点P为射线CB上一个动点(不与点C重合),点D为此抛物线对称轴上一点,且CPD=.(1)求抛物线的解析式;(2)若点P的横坐标为m,△PCD的面积为S,求S与m之间的函数关系式;(3)过点P作PE⊥DP,连接DE,F为DE的中点,试求线段BF的最小值.
在△ABC中,AB=AC,∠A=300,将线段BC绕点B逆时针旋转600得到线段BD,再将线段BD平移到EF,使点E在AB上,点F在AC上.(1)如图1,直接写出∠ABD和∠CFE的度数;(2)在图1中证明:AE=CF;(3)如图2,连接CE,判断△CEF的形状并加以证明.
已知关于的一元二次方程.(1)求证:方程总有两个实数根;(2)若m为整数,当此方程有两个互不相等的负整数根时,求m的值;(3)在(2)的条件下,设抛物线与x轴交点为A、B(点B在点A的右侧),与y轴交于点C.点O为坐标原点,点P在直线BC上,且OP=BC,求点P的坐标.
问题:如图1,在△ABC中,BE平分∠ABC,CE平分∠ACB.若∠A=800,则∠BEC= ;若∠A=n0,则∠BEC= .探究:(1)如图2,在△ABC中,BD、BE三等分∠ABC,CD、CE三等分∠ACB.若∠A=n0,则∠BEC= ;(2)如图3,在△ABC中,BE平分∠ABC,CE平分外角∠ACM.若∠A=n0,则∠BEC= ;(3)如图4,在△ABC中,BE平分外角∠CBM,CE平分外角∠BCN.若∠A=n0,则∠BEC= .
如图,⊙O是△ABC的外接圆,AB=AC,过点A作AD∥BC交BO的延长线于点D.(1)求证:AD是⊙O的切线;(2)若⊙O的半径OB=5,BC=8,求线段AD的长.