如图,抛物线y=x2﹣3x﹣18与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).
“品中华诗词,寻文化基因”.某校举办了第二届“中华诗词大赛”,将该校八年级参加竞赛的学生成绩统计后,绘制了如下不完整的频数分布统计表与频数分布直方图.
频数分布统计表
组别
成绩 x (分)
人数
百分比
A
60 ⩽ x < 70
8
20 %
B
70 ⩽ x < 80
16
m %
C
80 ⩽ x < 90
a
30 %
D
90 ⩽ x ⩽ 100
4
10 %
请观察图表,解答下列问题:
(1)表中 a = , m = ;
(2)补全频数分布直方图;
(3) D 组的4名学生中,有1名男生和3名女生.现从中随机抽取2名学生参加市级竞赛,则抽取的2名学生恰好是一名男生和一名女生的概率为 .
为了保证端午龙舟赛在我市汉江水域顺利举办,某部门工作人员乘快艇到汉江水域考察水情,以每秒10米的速度沿平行于岸边的赛道 AB 由西向东行驶.在 A 处测得岸边一建筑物 P 在北偏东 30 ° 方向上,继续行驶40秒到达 B 处时,测得建筑物 P 在北偏西 60 ° 方向上,如图所示,求建筑物 P 到赛道 AB 的距离(结果保留根号).
先化简,再求值: ( x + y ) ( x - y ) + y ( x + 2 y ) - ( x - y ) 2 ,其中 x = 2 + 3 , y = 2 - 3 .
如图,直线 y = - 3 4 x + 3 与 x 轴交于点 A ,与 y 轴交于点 B .抛物线 y = - 3 8 x 2 + bx + c 经过 A 、 B 两点,与 x 轴的另一个交点为 C .
(1)求抛物线的解析式;
(2)点 P 是第一象限抛物线上的点,连接 OP 交直线 AB 于点 Q .设点 P 的横坐标为 m , PQ 与 OQ 的比值为 y ,求 y 与 m 的函数关系式,并求出 PQ 与 OQ 的比值的最大值;
(3)点 D 是抛物线对称轴上的一动点,连接 OD 、 CD ,设 ΔODC 外接圆的圆心为 M ,当 sin ∠ ODC 的值最大时,求点 M 的坐标.
为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.
甲种客车
乙种客车
载客量 / (人 / 辆)
30
42
租金 / (元 / 辆)
300
400
学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.
(1)参加此次研学旅行活动的老师和学生各有多少人?
(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为 辆;
(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.