以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X表示.(1)如果X=8,求乙组同学植树棵树的平均数和方差;(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.
选修4—5:不等式选讲已知,若不等式恒成立,求实数的取值范围.
选修4—4:坐标系与参数方程求直线(为参数)被曲线所截的弦长.
选修4-1:几何证明选讲如图,已知,过顶点的圆与边切于的中点,与边分别交于点,且,点平分.求证:.
.(本小题满分12分)设、是函数的两个极值点。(1)若,求函数的解析式;(2)若,求的最大值。
(本小题满分12分)已知某单位有50名职工,现要从中抽取10名职工,将全体职工随机按1~50编号,并按编号顺序平均分成10组,按各组内抽取的编号依次增加5进行系统抽样.(1)若第5组抽出的号码为22,写出所有被抽出职工的号码;(2)分别统计这10名职工的体重(单位:公斤),获得体重数据的茎叶图如图所示,求该样本的方差;(温馨提示:答题前请仔细阅读卷首所给的公式)(3)在(2)的条件下,从这10名职工中随机抽取两名体重不轻于73公斤(≥73公斤)的职工,求体重为76公斤的职工被抽取到的概率.