如图,某人在一栋高层建筑顶部C处测得山坡坡脚A处的俯角为60°,又测得山坡上一棵小树树干与坡面交界P处的俯角为45°,已知OA=50米,山坡坡度为(即tan∠PAB=,其中PB⊥AB ),且O、A、B在同一条直线上. (1)求此高层建筑的高度OC.(结果保留根号形式.);(2)求坡脚A处到小树树干与坡面交界P处的坡面距离AP的长度. (人的高度及测量仪器高度忽略不计,结果保留根号形式.)
(·吉林省)如图,一艘海轮位于灯塔P的北偏东53°方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处. (1)在图中画出点B,并求出B处与灯塔P的距离(结果取整数); (2)用方向和距离描述灯塔P相对于B处的位置. (参考数据:sin53°=0.80,cos53°=0.60,tan53°=0.33,=1.41)
(·黑龙江牡丹江)在△ABC中,AB=AC=4,∠BAC=30°,以AC为一边作等边△ACD,连接BD.请画出图形,并直接写出△BCD的面积.
(·黑龙江大庆)小敏同学测量一建筑物CD的高度,她站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走30m,到达点F处测得楼顶C的仰角为45°(BFD在同一直线上).已知小敏的眼睛与地面距离为1.5m,求这栋建筑物CD的高度(参考数据:,.结果保留整数)
(·辽宁盘锦)如图所示,小明家小区空地上有两颗笔直的树CD、EF.一天,他在A处测得树顶D的仰角∠DAC=30°,在B处测得树顶F的仰角∠FBE=45°,线段BF恰好经过树顶D.已知A、B两处的距离为2米,两棵树之间的距离CE=3米,A.B、C、E四点在一条直线上,求树EF的高度.(≈1.7,≈1.4,结果保留一位小数)
(·辽宁辽阳)如图,码头A在码头B的正东方向,两个码头之间的距离为32海里,今有一货船由码头A出发,沿北偏西60°方向航行到达小岛C处,此时测得码头B在南偏东45°方向,求码头A与小岛C的距离.(≈1.732,结果精确到0.01海里)