某童装厂现有甲种布料38米,乙种布料26米,现计划用这两种布料生产L、M两种型号的童装共50套.已知做一套L型号的童装需用甲种布料0.5米,乙种布料1米,可获利45元;做一套M型号童装需用甲种布料0.9米,乙种布料0.2米,可获利30元,设生产L型号的童装套数为x,用这批布料生产这两种型号的童装所获的利润为y(元).(1)如果你作为该厂的老板,应如何安排生产计划?请设计出所有生产方案;(2)该厂在生产这批童装中,当L型号的童装为多少套时,能使该厂所获的利润最大?最大利润为多少?
某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,商家共盈利多少元?
四张背面完全相同的纸牌(如图,用①、②、③、④表示),正面分别写有四个不同的条件.小明将这4张纸牌背面朝上洗匀后,先随机抽出一张(不放回),再随机抽出一张. (1)写出两次摸牌出现的所有可能的结果(用①、②、③、④表示); (2)以两次摸出的牌面上的结果为条件,求能判断四边形ABCD为平行四边形的概率.
化简求值:,a取﹣1、0、1、2中的一个数.
如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG. (1)试说明四边形EFCG是矩形; (2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中, ①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由; ②求点G移动路线的长.
如图,将透明三角形纸片PAB的直角顶点P落在第四象限,顶点A、B分别落在反比例函数图象的两支上,且PB⊥x于点C,PA⊥y于点D,AB分别与x轴,y轴相交于点E、F.已知B(1,3). (1)k=; (2)试说明AE=BF; (3)当四边形ABCD的面积为时,求点P的坐标.