勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载。如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理。图2是由图1放入矩形内得到的,∠BAC=90º ,AB=3,AC=4,点D、E、F、G、H、I都在矩形KLMJ的边上,则矩形KLMJ的面积为( ) 图1 图2 A.90 B.100 C.110 D.121
如图,反比例函数的图象经过二次函数图象的顶点(,m)(m>0),则有()
如图,ABCD是矩形纸片,翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,折痕分别是CE,AF,则等于()
某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km.设提速前列车的平均速度为xkm/h,则列方程是()
如图,在▱ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,▱ABCD的周长是在14,则DM等于()
如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()