设、分别为椭圆的左、右两个焦点.(Ⅰ) 若椭圆C上的点到、两点的距离之和等于4, 写出椭圆C的方程和离心率.;(Ⅱ) 若M、N是椭圆C上关于原点对称的两点,点P是椭圆上除M、N外的任意一点, 当直线PM、PN的斜率都存在, 并记为、时, 求证: ·为定值.
已知向量(>0),函数的最小正周期为。 (I)求函数的单调增区间;(II)如果△ABC的三边a、b、c所对的角分别为A、B、C,且满足求的值。
已知函数, (1)设常数,若在区间上是增函数,求的取值范围; (2)设集合,,若,求的取值范围
已知函数, (1)当时,求函数的最小值. (2)对于任意,不等式都成立,求实数的范围.
已知函数,其图象过点. (1)求的值; (2)将函数的图象上各点的横坐标缩短为原来的,纵坐标不变,得到函数的图象,求函数在区间上的最大值和最小值.
已知函数一个周期的图象如图所示.(1)求函数的表达式; (2)若,且为△ABC的一个内角,求:的值.