已知动圆过定点,且与直线 相切.(1)求动圆的圆心M的轨迹C的方程;(2)抛物线C上一点,是否存在直线与轨迹C相交于两不同的点B,C,使 的垂心为?若存在,求直线的方程;若不存在,说明理由.
已知双曲线:的右焦点为,在的两条渐近线上的射影分别为、,是坐标原点,且四边形是边长为的正方形.(Ⅰ)求双曲线的方程;(Ⅱ)过的直线交于、两点,线段的中点为,问是否能成立?若成立,求直线的方程;若不成立,请说明理由.
数列中,,,.(Ⅰ)证明:数列是等比数列,并求;(Ⅱ)求数列的前项和.
如图,在四棱锥中,平面,,,.(Ⅰ)证明:;(Ⅱ)求与平面所成角的大小.
某项试验在甲、乙两地各自独立地试验两次,已知在甲、乙两地每次试验成功的概率依次为、;不成功的概率依次为、.(Ⅰ)求以上的四次试验中,至少有一次试验成功的概率;(Ⅱ)在以上的四次试验中,试验成功的次数为,求的分布列,并计算.
在中,角、、所对的边依次为、、,且.(Ⅰ)求的值;(Ⅱ)当的面积为,且时,求、、.