一个不透明的布袋里装有红、黄、绿三种颜色的球(除颜色不同,其它均无任何区别),其中红球2个,黄球1个,从袋中任意摸出一个球是红球的概率是.(1)求布袋中绿球的个数;(2)第一次从袋中任意摸出一个球,记下颜色后放回袋中,第二次再摸出一个球记下颜色,请用画树状图或列表的方法求两次都摸到红球的概率.
计算:+()-1+(2-π)0-()2.
如图,直线AC∥BD,连结AB,直线AC、BD及线段AB把平面分成①,②,③,④四个部分,规定:线上各点不属于任何部分。当动点P落在某个部分时,连结PA、PB,构成∠PAC,∠APB,∠PBD三个角。(提示:有公共端点的两条重合的射线所组成的角是0°) (1)当动点P落在第①部分时,试说明∠APB=∠PAC+∠PBD; (2)当动点P落在第②部分时,∠APB,∠PAC,∠PBD三个角之间的关系是:; (3)动点P在第③部分时,试探究∠APB,∠PAC,∠PBD三个角之间的关系,写出点P的具体位置和相应的结论,并选择一种结论加以说明.
如图,DE∥BC,∠BGF=∠CDE,试说明FG∥CD.
如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上,O为AD边的中点,若把四边形ABCD先向右平移3个单位长度,再向下平移2个单位长度,试解决下列问题: (1)画出四边形ABCD平移后的图形四边形A′B′C′D′; (2)在四边形A′B′C′D′上标出点O的对应点O’; (3)四边形A′B′C′D′ 的面积=.
计算:如图,AB∥CD,∠B=61°,∠D=35°.求∠1和∠A的度数.