如图是杨辉三角系数表,它的作用是指导读者按规律写出行如(a+b)n展开式的系数,请你仔细观察下表中的规律,填出展开式中所缺的系数.(1)(a+b)=a+b(2)(a+b)2=a2+2ab+b2(3)(a+b)3=a3+3a2b+3ab2+b3(4)(a+b)4=a4+ a3b+6a2b2+4ab3+b4(5)(a+b)5=a5+ a4b+ a3b2+ a2b3+ ab4+b5.
(2014年福建漳州12分)阅读材料:如图1,在△AOB中,∠O=90°,OA=OB,点P在AB边上,PE⊥OA于点E,PF⊥OB于点F,则PE+PF=OA.(此结论不必证明,可直接应用) (1)【理解与应用】 如图2,正方形ABCD的边长为2,对角线AC,BD相交于点O,点P在AB边上,PE⊥OA于点E,PF⊥OB于点F,则PE+PF的值为 . (2)【类比与推理】 如图3,矩形ABCD的对角线AC, BD相交于点O,AB=4,AD=3,点P在AB边上,PE∥OB交AC于点E,PF∥OA交BD于点F,求PE+PF的值; (3)【拓展与延伸】 如图4,⊙O的半径为4,A,B,C, D是⊙O上的四点,过点C,D的切线CH,DG相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF是否为定值?若是,请求出这个定值;若不是,请说明理由.
(年河南省11分)如图,抛物线与x轴交于A(-1,0),B(5,0)两点,直线与y轴交于点C,,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m. (1)求抛物线的解析式; (2)若PE =5EF,求m的值; (3)若点E/是点E关于直线PC的对称点、是否存在点P,使点E/落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.
(年四川广安10分)如图,在平面直角坐标系中,抛物线与x轴交于点A(﹣4,0),B(﹣1,0)两点. (1)求抛物线的解析式; (2)在第三象限的抛物线上有一动点D. ①如图(1),若四边形ODAE是以OA为对角线的平行四边形,当平行四边形ODAE的面积为6时,请判断平行四边形ODAE是否为菱形?说明理由. ②如图(2),直线与抛物线交于点Q、C两点,过点D作直线DF⊥x轴于点H,交QC于点F.请问是否存在这样的点D,使点D到直线CQ的距离与点C到直线DF的距离之比为:2?若存在,请求出点D的坐标;若不存在,请说明理由.
(年山东菏泽10分)在平面直角坐标系xOy,已知抛物线. (1)求证:无论m为何值,该抛物线与x轴总有两个交点; (2)该抛物线与x轴交于A,B两点,点A在点B的左侧,且OA<OB,与y轴的交点坐标为,求此抛物线的解析式; (3)在(2)的条件下,抛物线的对称轴与x轴的交点为N,若点M是线段AN上的任意一点,过点M作直线MC⊥x轴,交抛物线于点C,记点C关于抛物线对称轴的对称点为D,点P是线段MC上一点,且满足MP=MC,连结CD,PD,作PE⊥PD交x轴与点E,问是否存在这样的点E,使得PE=PD,若存在,求出点E的坐标;若不存在,请说明理由.
(年湖南怀化10分)如图1,在平面直角坐标系中,AB=OB=8,∠ABO=90°,∠yOC=45°,射线OC以每秒2个单位长度的速度向右平行移动,当射线OC经过点B时停止运动,设平行移动x秒后,射线OC扫过Rt△ABO的面积为y. (1)求y与x之间的函数关系式; (2)当x=3秒时,射线OC平行移动到O′C′,与OA相交于G,如图2,求经过G,O,B三点的抛物线的解析式; (3)现有一动点P在(2)中的抛物线上,试问点P在运动过程中,是否存在三角形POB的面积S=8的情况?若存在,求出点P的坐标,若不存在,请说明理由.