类比二次函数的图象的平移,我们对反比例函数的图象作类似的变换:(1)将y=的图象向右平移1个单位,所得图象的函数表达式为 _________ ,再向上平移1个单位,所得图象的函数表达式为 _________ ;(2)函数y=的图象可由y=的图象向 _________ 平移 _________ 个单位得到;y=的图象可由哪个反比例函数的图象经过怎样的变换得到;(3)一般地,函数y=(ab≠0,且a≠b)的图象可由哪个反比例函数的图象经过怎样的变换得到?
已知抛物线与x轴交于不同的两点和,与y轴交于点C,且是方程的两个根(). (1)求抛物线的解析式;(2)过点A作AD∥CB交抛物线于点D,求四边形ACBD的面积;(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作平行于x轴的直线l交BC于点Q,那么在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.
如图,在平面直角坐标系中,直线分别交轴、轴于两点.点、,以为一边在轴上方作矩形,且.设矩形与重叠部分的面积为.(1)求点、的坐标;(2)当值由小到大变化时,求与的函数关系式;(3)若在直线上存在点,使等于,请直接写出的取值范围.
如图1,在中,为锐角,点为射线上一点,联结,以为一边且在的右侧作正方形. (1)如果,, ①当点在线段上时(与点不重合),如图2,线段所在直线的位置关系为 __________ ,线段的数量关系为 ; ②当点在线段的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
(2)如果,是锐角,点在线段上,当满足什么条件时,(点不重合),并说明理由.
把两个三角形按如图1放置,其中,,,且,.把△DCE绕点C顺时针旋转15°得到△D1CE1,如图2,这时AB与CD1相交于点,与D1E1相交于点F.(1)求的度数;(2)求线段AD1的长;(3)若把△D1CE1绕点顺时针再旋转30°得到△D2CE2,这时点B在△D2CE2的内部、外部、还是边上?请说明理由.
列方程或方程组解应用题:2008年5月12日14时28分在我国四川省汶川地区发生了里氏8.0级强烈地震,灾情牵动全国人民的心.“一方有难、八方支援”,某厂计划加工1500顶帐篷支援灾区,在加工了300顶帐篷后,由于情况紧急,该厂又增加了人员进行生产,将工作效率提高到原来的1.5倍,结果提前4天完成任务.问该厂原来每天加工多少顶帐篷.