设为实数,函数。①求的单调区间与极值;②求证:当且时,。
已知等差数列{}前项和为,且 (Ⅰ)求数列{}的通项公式 (Ⅱ)若,求数列的前项和
如图,已知斜四棱柱ABCD-A1B1C1D1的底面ABCD是菱形,且∠C1CB=∠C1CD=∠BCD. (1)证明:C1C⊥BD; (2)当的值为多少时,能使A1C⊥平面C1BD?请给出证明
在三棱锥 中,,. (1)求三棱锥的体积; (2)求二面角的大小; (3)求异面直线SB和AC所成角的余弦值。
如图,在三棱锥中,分别为的中点。 (1)求证:平面; (2)若平面平面,且,,求证:平面平面。
已知一个几何体的三视图如图所示。 (1)求此几何体的表面积; (2)如果点在正视图中所示位置:为所在线段中点,为顶点,求在几何体表面上,从点到点的最短路径的长。