如图,已知DE、BF分别平分∠ADC和∠ABC,∠1=∠2,∠ADC=∠ABC,由此可以推出图中哪些线段平行?请说明理由.
已知:如图,点B,F,C,E在同一条直线上,BF=CE,AC=DF,且AC∥DF.求证:∠B=∠E.
已知:如图,抛物线与x轴正半轴交于点A.(1)在轴上方的抛物线上存在点D,使为等腰直角三角形,请求出点D的坐标;(2)在(1)的条件下,连接AD,在直线AD的上方的抛物线上有一动点C,连结、,当的面积最大时,求直线OC的解析式;(3)在(1)(2)的条件下,作射线OD,在线段OD上有点B,且,过点B作于点B,交轴于点F.点P在轴的正半轴上,过点P作轴,交射线于点R,交射线于点E,交抛物线于点Q.以为一边,在的右侧作矩形,其中.请求出矩形RQMN与重叠部分为轴对称图形时点P的横坐标的取值范围.
如图1,在菱形ABCD中,ABC=60°,若点E在AB的延长线上,EF∥AD,EF=BE,点P是DE的中点,连接FP并延长交AD于点G.(1)过D作DHAB,垂足为H,若DH=,BE=AB,求DG的长;(2)连接CP,求证:CPFP;(3)如图2,在菱形ABCD中,ABC=60°,若点E在CB的延长线上运动,点F在AB的延长线上运动,且BE=BF,连接DE,点P为DE的中点,连接FP、CP,那么第(2)问的结论成立吗?若成立,求出的值;若不成立,请说明理由.
对于实数a、b,定义一种新运算“”为:ab=,这里等式右边是通常的四则运算.例如:13=.(1)解方程;(2)若,均为自然数,且满足等式,求满足条件的所有数对(,).
如图,某中学操场边有一旗杆A,小明在操场的C处放风筝,风筝飞在图中的D处,在CA的延长线上离小明30米远的E处的小刚发现自己的位置与风筝D和旗杆的顶端B在同一条直线上,小刚在E处测得旗杆顶点B的仰角为,且tan=,小明在C处测得旗杆顶点B的仰角为45°.(1)求旗杆的高度.(2)此时,在C处背向旗杆,测得风筝D的仰角(即∠DCF)为48°,求风筝D离地面的距离.(结果精确到0.1米,其中sin48°≈0.74, cos48°≈0.67,tan48°≈1.11)