复数z1=3+4i,z2=0,z3=c+(2c-6)i在复平面内对应的点分别为A、B、C,若∠BAC是钝角,求实数c的取值范围.
我校高三年级进行了一次水平测试.用系统抽样的方法抽取了50名学生的数学成绩,准备进行分析和研究.经统计成绩的分组及各组的频数如下:[40,50), 2; [50,60), 3; [60,70), 10; [70,80), 15; [80,90), 12; [90,100], 8.(Ⅰ)完成样本的频率分布表;画出频率分布直方图.(Ⅱ)估计成绩在85分以下的学生比例;(Ⅲ)请你根据以上信息去估计样本的众数、中位数、平均数.(精确到0.01)频率分布表 频率分布直方图
如图,四棱锥P—ABCD中,底面ABCD是边长为的正方形E, F分别为PC,BD的中点,侧面PAD⊥底面ABCD,且PA=PD=AD.(Ⅰ)求证:EF//平面PAD;(Ⅱ)求三棱锥C—PBD的体积.
已知公比大于1的等比数列{}满足:++=28,且+2是和的等差中项.(Ⅰ)求数列{}的通项公式;(Ⅱ)若=,求{}的前n项和.
设函数,记的导函数,的导函数,的导函数,…,的导函数,.(1)求;(2)用n表示;(3)设,是否存在使最大?证明你的结论.
某水域一艘装载浓硫酸的货船发生侧翻,导致浓硫酸泄漏,对河水造成了污染.为减少对环境的影响,环保部门迅速反应,及时向污染河道投入固体碱,个单位的固体碱在水中逐渐溶化,水中的碱浓度与时间(小时)的关系可近似地表示为:,只有当污染河道水中碱的浓度不低于时,才能对污染产生有效的抑制作用.(1)如果只投放1个单位的固体碱,则能够维持有效的抑制作用的时间有多长?(2)第一次投放1单位固体碱后,当污染河道水中的碱浓度减少到时,马上再投放1个单位的固体碱,设第二次投放后水中碱浓度为,求的函数式及水中碱浓度的最大值.(此时水中碱浓度为两次投放的浓度的累加)