在闭区间 [-1,1]上任取两个实数,则它们的和不大于1的概率是 。
定义在上的函数满足:,且对于任意的,都有,则不等式的解集为 __________________.
箱中装有标号为1,2,3,4,5,6且大小相同的6个球,从箱中一次摸出两个球,记下号码并放回,如果两球号码之积是4的倍数,则获奖.现有4人参与摸奖,恰好有3人获奖的概率是________________.
已知函数..在处有极值10,则等于_______.
有编号分别为1,2,3,4,5的5个红球和5个黑球,从中随机取出4个,则取出球的编号互不相同的概率为_______________.
定义在实数集R上的函数,如果存在函数(A、B为常数),使得对一切实数都成立,那么称为函数的一个承托函数。给出如下四个结论:①对于给定的函数,其承托函数可能不存在,也可能有无数个;②定义域和值域都是R的函数不存在承托函数;③为函数的一个承托函数;④为函数的一个承托函数。其中所有正确结论的序号是____________________.