(本小题13分) 已知函数.(Ⅰ)求函数图象的对称轴方程;(Ⅱ)求的单调增区间;(Ⅲ)当时,求函数的最大值,最小值.
一条直线经过点P(3,2),并且分别满足下列条件,求直线方程:(1)倾斜角是直线x-4y+3=0的倾斜角的2倍;(2)与x、y轴的正半轴交于A、B两点,且△AOB的面积最小(O为坐标原点).
已知函数f(x)=x|x2-a| (a∈R),(1)当a≤0时,求证函数f(x)在(-∞,+∞)上是增函数;(2)当a=3时,求函数f(x)在区间[0,b]上的最大值
设函数f(x)=lnx-px+1(1)当P>0时,若对任意x>0,恒有f(x)≤0,求P的取值范围(2)证明: (n∈N,n≥2)
设函数f(x)=sin(x-)-2cos2x+1(1)求f(x)的最小正周期(2)若函数y=g(x)与f(x)的图象关于直线x=1对称,求当x∈[0,]时,y=g(x)的最大值
已知函数,(1)求在x=1处的切线斜率的取值范围;(2)求当在x=1处的切线的斜率最小时,的解析式;(3)在(Ⅱ)的条件下,是否总存在实数m,使得对任意的,总存在,使得成立?若存在,求出实数m的取值范围;若不存在,说明理由.