如图,在△ABC中,点O在AB上,以O为圆心的圆经过A,C两点,交AB于点D,已知2∠A +∠B =.(1)求证:BC是⊙O的切线;(2)若OA=6,BC=8,求BD的长.
(本小题满分4分)马小虎准备制作一个封闭的正方体纸盒子,他先用5个大小一样的正方形纸板制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,需要在给出的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体纸盒子。请你帮助马小虎画上所拼接的正方形。(要求:①画出两种不同的拼接法;②添加的正方形用阴影表示)
已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.(1)如图1,当点D在边BC上时,求证:①BD=CF;②AC=CF+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边CB的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系.
如图,在平行四边形中,对角线AC⊥BC,AC=BC=2,动点P从点A出发沿AC向终点C移动,过点P分别作PM∥AB交BC于M,PN∥AD交DC于N.连结AM.(1)四边形PMCN的形状有可能是菱形吗?请说明理由(2)当AP=1时, 试求出四边形PMCN的面积。
如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.
如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长