列方程解应用题某公司2013年计划在甲、乙两个电视台播放总时长为300分钟的广告,已知甲、乙两电视台的广告收费标准分别为500元/分钟和200元/分钟,该公司2013年的广告总费用计划为9万元。(1)求:该公司2013年计划在甲、乙两个电视台播放广告的时长分别为多少分钟?(2)如果甲、乙两个电视台播放该公司的广告,预计能给该公司分别带来0.3万元/分钟和0.2万元/分钟的收益。求:甲、乙两个电视台2013年为该公司播放广告,预计将能给该公司带来的总收益是多少万元?
(桂林)如图,已知抛物线与坐标轴分别交于点A(0,8)、B(8,0)和点E,动点C从原点O开始沿OA方向以每秒1个单位长度移动,动点D从点B开始沿BO方向以每秒1个单位长度移动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动. (1)直接写出抛物线的解析式: ; (2)求△CED的面积S与D点运动时间t的函数解析式;当t为何值时,△CED的面积最大?最大面积是多少? (3)当△CED的面积最大时,在抛物线上是否存在点P(点E除外),使△PCD的面积等于△CED的最大面积?若存在,求出P点的坐标;若不存在,请说明理由.
(百色)抛物线经过A(0,2),B(3,2)两点,若两动点D、E同时从原点O分别沿着x轴、y轴正方向运动,点E的速度是每秒1个单位长度,点D的速度是每秒2个单位长度. (1)求抛物线与x轴的交点坐标; (2)若点C为抛物线与x轴的交点,是否存在点D,使A、B、C、D四点围成的四边形是平行四边形?若存在,求点D的坐标;若不存在,说明理由; (3)问几秒钟时,B、D、E在同一条直线上?
(钦州)如图,在平面直角坐标系中,以点B(0,8)为端点的射线BG∥x轴,点A是射线BG上的一个动点(点A与点B不重合).在射线AG上取AD=OB,作线段AD的垂直平分线,垂足为E,且与x轴交于点F,过点A作AC⊥OA,交射线EF于点C.连接OC、CD,设点A的横坐标为t. (1)用含t的式子表示点E的坐标为_______; (2)当t为何值时,∠OCD=180°? (3)当点C与点F不重合时,设△OCF的面积为S,求S与t之间的函数解析式.
(柳州)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发的同时点Q从点C出发,以1cm/s的速度向点B运动,当点P到达点C时,点Q也停止运动.设点P,Q运动的时间为t秒. (1)从运动开始,当t取何值时,PQ∥CD? (2)从运动开始,当t取何值时,△PQC为直角三角形?
(贺州)如图,AB是⊙O的直径,C为⊙O上一点,AC平分∠BAD,AD⊥DC,垂足为D,OE⊥AC,垂足为E. (1)求证:DC是⊙O的切线; (2)若OE=cm,AC=cm,求DC的长(结果保留根号).