甲盒内装有3张卡片,它们分别写有数字1、2、3,乙盒内装有2张卡片,它们分别写有数字1、2.现分别从甲、乙两个盒中随机地各取出1张卡片,请你用列举法(画树状图或列表的方法)求取出的这两张卡片上的数字之和为3的概率.
计算:
如图1,在等腰梯形ABCD中,AB∥CO,E是AO的中点,过点E作EF∥OC交BC于F,AO=4,OC=6,∠AOC=60°.现把梯形ABCO放置在平面直角坐标系中,使点O与原点重合,OC在x轴正半轴上,点A、B在第一象限内。 (1) 求点E的坐标; (2) 点P为线段EF上的一个动点,过点P作PM⊥EF交OC于点M,过M作MN∥AO交折线ABC于点N, 连结PN。设PE=x.△PMN的面积为S。 ① 求S关于x的函数关系式; ② △PMN的面积是否存在最大值,若不存在,请说明理由。若存在,求出面积的最大值; (3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC)。现在开始操作:固定等腰梯形ABCO,将直角梯形EDGH以每秒1个单位的速度沿OC方向向右移动,直到点D与点C重合时停止(如图2)。设运动时间为t秒,运动后的直角梯形为E′D′G′H′;探究:在运动过程中,等腰梯形ABCO与直角梯形E′D′G′H′重合部分的面积y与时间t的函数关系式。
如图所示:直线MN⊥RS于点O,点B在射线OS上,OB=2,点C在射线ON上,OC=2,点E是射线OM上一动点,连结EB,过O作OP⊥EB于P,连结CP,过P作PF⊥PC交射线OS于F。 (1)求证:△POC∽△PBF。 (2)当OE=1,OE=2时, BF的长分别为多少?当OE=n时,BF=_______. (3)当OE=1时,;OE=2时, ;…,OE=n时,.则=_______.(直接写出答案)
备用图
阅读理解:给定一个矩形,如果存在另一个矩形,它的周长和面积分别是已知矩形的周长和面积的一半,则这个矩形是给定矩形的“减半”矩形.如图矩形是矩形ABCD的“减半”矩形.请你解决下列问题:(1)当矩形的长和宽分别为1,2时,它是否存在“减半”矩形?请作出判断,并请说明理由;(2)边长为的正方形存在“减半”正方形吗?如果存在,求出“减半”正方形的边长;如果不存在,说明理由.
须江中学为了培养学生的社会实践能力,今年“五一”长假期间要求学生参加一项社会调查活动.为此,小明在他所居住小区的600个家庭中,随机调查了50个家庭在新工资制度实施后的收入情况,并绘制了如下的频数分布表和频数分布直方图(收入取整数,单位:元).请你根据以上提供的信息,解答下列问题:(1)补全频数分布表和频数分布直方图;(2)这50个家庭收入的中位数落在 小组;(3)请你估算该小区中收入较低(不足1400元)的家庭个数大约有多少?