(本小题满分12分)如图,已知三棱柱ABC-A1B1C1的侧棱与底面垂直,AA1=AB=AC=1,且AB⊥AC,M是CC1的中点,N是BC的中点,点P在直线A1B1上,且满足(1)证明:PN⊥AM(2)若,求直线AA1与平面PMN所成角的正弦值.
(本小题满分12分)已知f(x)=ex-ax-1. (1)求f(x)的单调增区间; (2)若f(x)在定义域R内单调递增,求a的取值范围; (3)是否存在a,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a的值;若不存在,说明理由.
(本小题满分12分)若函数y=lg(3-4x+x2)的定义域为M.当x∈M时,求f(x)=2x+2-3×4x的最值及相应的x的值.
(本小题满分12分) 已知函数f(x)=,x∈[1,+∞). (1)当a=时,判断证明f(x)的单调性并求f(x)的最小值; (2)(2)若对任意x∈[1,+∞),f(x)>1恒成立,试求实数a的取值范围.
(本小题满分12分) 已知集合A={x|x2-2x-8≤0,x∈R},B={x|x2-(2m-3)x+m2-3m≤0,x∈R,m∈R}. (1)若A∩B=[2,4],求实数m的值; (2)设全集为R,若A∁RB,求实数m的取值范围.
选修4-5 不等式选讲 已知函数 (I)试求的值域; (II)设,若对,恒有成立,试求实数a的取值范围。