已知在点(1,f(1))处的切线方程为。(1)求f(x)的表达式;(2)若f(x)满足恒成立,则称f(x)为g(x)的一个“上界函数”,如果f(x)为的一个“上界函数”,求t的取值范围;(3)当m>0时讨论在区间(0,2)上极值点的个数。
(本小题满分12分) 已知函数为奇函数,函数在区间上单调递减,在上单调递增. (I)求实数的值; (II)求的值及的解析式; (Ⅲ)设,试证:对任意的且都有.
(本小题满分12分) 关于的函数与数列具有关系:,(=1,2,3,…)(为常数),又设函数的导数,为方程的实根. (I)用数学归纳法证明:; (II)证明:.
(本小题满分12分) 试利用如图所示的等边三角形数阵,推导
(本小题满分12分) 已知展开式中最后三项的系数的和是方程的正数解,它的中间项是,求的值.
(本小题满分10分) 设函数 (I)求的最小值; (II)若对时恒成立,求实数的取值范围.