(本小题满分12分,(Ⅰ)小问3分,(Ⅱ)小问9分.)直线称为椭圆的“特征直线”,若椭圆的离心率.(1)求椭圆的“特征直线”方程;(2)过椭圆C上一点作圆的切线,切点为P、Q,直线PQ与椭圆的“特征直线”相交于点E、F,O为坐标原点,若取值范围恰为,求椭圆C的方程.
已知的周长为,且 (1)求边的长; (2)若的面积为,求角.
设是给定的正整数,有序数组()中或. (1)求满足“对任意的,,都有”的有序数组()的个数; (2)若对任意的,,,都有成立,求满足“存在,使得”的有序数组()的个数
【原创】(本小题满分10分)从棱长为1的正方体的8个顶点中任取3个点,设随机变量ξ是以这三点为顶点的三角形的面积. (1)求概率; (2)求ξ的分布列,并求其数学期望E(ξ ).
(选修4—5:不等式证明选讲)已知均为正数,证明:.
选修4-4:坐标系与参数方程(本小题满分10分) 在极坐标系中,已知圆与直线相切,求实数a的值.