(8分)如图,抛物线与轴交于点,与轴交于,B两点(点A在点B的右侧),过C作直线,与抛物线相交于点,与对称轴交于点N,点为直线上的一个动点,过P作轴的垂线交抛物线于点G,设线段PG的长度为(1)求该抛物线的函数解析式 (2)当0<<5时,请用含的代数式表示,求出的最大值(3)是否存在这样的点P,使以M,N,P,G为顶点的四边形是平行四边形,若存在,请求出点P的坐标;若存在,请说明理由。
已知函数图象如图所示,根据图象可得: (1)抛物线顶点坐标; (2)对称轴为; (3)当x=时,y有最大值是; (4)当时,y随着x得增大而增大。 (5)当时,y>0.
已知:在ABC中,∠B=45°,∠C =60°,BC=8. 求AC的长(结果保留根号).
在Rt△ABC中,∠C=90°,a=30,c=30,解这个三角形。
计算:.
某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产记为正、减产记为负): (1)根据记录的数据可知星期四生产自行车多少辆? (2)根据记录的数据可知本周实际生产自行车多少辆? (3)产量最多的一天比产量最少的一天多生产自行车多少辆? (4)该厂实行每周计件工资制,每生产一辆可得60元,若超过部分每辆另奖15元,少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?