已知函数为偶函数, 且(Ⅰ)求的值;(Ⅱ)若为三角形的一个内角,求满足的的值.
已知函数f(x)=的图象过原点,且关于点(-1,2)成中心对称.(1)求函数f(x)的解析式;(2)若数列{an}满足a1=2,an+1=f(an),试证明数列为等比数列,并求出数列{an}的通项公式.
已知等差数列{an}满足:a2=5,a4+a6=22,数列{bn}满足b1+2b2+…+2n-1bn=nan,设数列{bn}的前n项和为Sn.(1)求数列{an},{bn}的通项公式;(2)求满足13<Sn<14的n的集合.
已知数列{an}的前n项和是Sn,且Sn+an=1.(1)求数列{an}的通项公式;(2)记bn=log3,数列的前n项和为Tn,证明:Tn<.
已知数列{an}和{bn}满足:a1=λ,an+1=an+n-4,bn=(-1)n(an-3n+21),其中λ为实数,n为正整数.(1)对任意实数λ,证明:数列{an}不是等比数列;(2)试判断数列{bn}是否为等比数列,并证明你的结论.
已知向量a=(Asin ωx,Acos ωx),b=(cos θ,sin θ),f(x)=a·b+1,其中A>0,ω>0,θ为锐角.f(x)的图象的两个相邻对称中心的距离为,且当x=时,f(x)取得最大值3.(1)求f(x)的解析式;(2)将f(x)的图象先向下平移1个单位,再向左平移φ(φ>0)个单位得g(x)的图象,若g(x)为奇函数,求φ的最小值.