甲、乙两名运动员在一次射击预选赛中,分别射击了4次,成绩如下表(单位:环):
(Ⅰ)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;(Ⅱ)现要从中选派一人参加正式比赛,你认为选派哪位运动员参加比较合适?请说明理由.
如图所示,已知圆为圆上一动点,点是线段的垂直平分线与直线的交点.(1)求点的轨迹曲线的方程;(2)设点是曲线上任意一点,写出曲线在点处的切线的方程;(不要求证明)(3)直线过切点与直线垂直,点关于直线的对称点为,证明:直线恒过一定点,并求定点的坐标.
已知函数,设曲线在点处的切线与轴的交点为,其中为正实数.(1)用表示;(2),若,试证明数列为等比数列,并求数列的通项公式;(3)若数列的前项和,记数列的前项和,求.
某种商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到元.公司拟投入万元作为技改费用,投入50万元作为固定宣传费用,投入万元作为浮动宣传费用.试问:当该商品明年的销售量至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.
如图,在四棱锥中,底面为直角梯形,,垂直于底面,分别为的中点.(1)求证:;(2)求点到平面的距离.
设向量,函数.(1)求函数的单调递增区间;(2)求使不等式成立的的取值集合.