(本小题满分13分)时下,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量(单位:千套)与销售价格(单位:元/套)满足的关系式,其中,为常数.已知销售价格为4元/套时,每日可售出套题21千套.(1)求的值;(2)假设网校的员工工资,办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大.(保留1位小数)
我们将不与抛物线对称轴平行或重合且与抛物线只有一个公共点的直线称为抛物线的切线,这个公共点称为切点.解决下列问题: 已知抛物线上的点到焦点的距离等于4,直线与抛物线相交于不同的两点、,且(为定值).设线段的中点为,与直线平行的抛物线的切点为.. (1)求出抛物线方程,并写出焦点坐标、准线方程; (2)用、表示出点、点的坐标,并证明垂直于轴; (3)求的面积,证明的面积与、无关,只与有关.
某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张.为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少万张,同时规定一旦某年发放的牌照超过15万张,以后每一年发放的电动车的牌照的数量维持在这一年的水平不变. (1)记2013年为第一年,每年发放的燃油型汽车牌照数构成数列,每年发放的电动型汽车牌照数为构成数列,完成下列表格,并写出这两个数列的通项公式; (2)从2013年算起,求二十年发放的汽车牌照总量.
已知函数,其中为常数. (1)求函数的周期; (2)如果的最小值为,求的值,并求此时的最大值及图像的对称轴方程.
已知圆锥母线长为6,底面圆半径长为4,点是母线的中点,是底面圆的直径,半径与母线所成的角的大小等于. (1)求圆锥的侧面积和体积. (2)求异面直线与所成的角;
如图,直线与抛物线(常数)相交于不同的两点、,且(为定值),线段的中点为,与直线平行的切线的切点为(不与抛物线对称轴平行或重合且与抛物线只有一个公共点的直线称为抛物线的切线,这个公共点为切点). (1)用、表示出点、点的坐标,并证明垂直于轴; (2)求的面积,证明的面积与、无关,只与有关; (3)小张所在的兴趣小组完成上面两个小题后,小张连、,再作与、平行的切线,切点分别为、,小张马上写出了、的面积,由此小张求出了直线与抛物线围成的面积,你认为小张能做到吗?请你说出理由.