数列前项和为,.(1)求证:数列为等比数列;(2)设,数列前项和为,求证:.
已知.(1)化简;(2)若,求的值.
(1)设为第四象限角,其终边上一个点为 ,且,求;(2)若,求的值.
已知,函数.(1) 如果实数满足,函数是否具有奇偶性?如果有,求出相应的值,如果没有,说明为什么?(2) 如果判断函数的单调性;(3) 如果,,且,求函数的对称轴或对称中心.
(本小题16分)函数的定义域为{x| x ≠1},图象过原点,且.(1)试求函数的单调减区间;(2)已知各项均为负数的数列前n项和为,满足,求证:;
(本小题16分)如图所示,数列的前项的和,为数列的前项的和,且.(1)求数列、的通项公式;(2)找出所有满足:的自然数的值(不必证明);(3)若不等式对于任意的,恒成立,求实数的最小值,并求出此时相应的的值.