(本题满分13分)已知抛物线过点。(1)求抛物线的标准方程,并求其准线方程;(2)是否存在平行于(为坐标原点)的直线,使得直线与的距离等于?若存在,求直线的方程,若不存在,说明理由。(3)过抛物线的焦点作两条斜率存在且互相垂直的直线,设与抛物线相交于点,与抛物线相交于点,求的最小值。
已知二项式的展开式中各项系数和为64. ⑴求; ⑵求展开式中的常数项.
已知虚数z满足,且为实数,求z.
已知函数 (1)试求函数的最大值; (2)若存在,使成立,试求的取值范围; (3)当且时,不等式恒成立,求的取值范围;
已知函数. (1)判断并证明的奇偶性; (2)求证:; (3)已知a,b∈(-1,1),且,,求,的值.
已知命题p:方程x2+mx+1=0有负实数根; 命题q:方程4x2+4(m-2)x+1=0无实数根, 若“p或q”为真命题,“p且q”为假命题,求实数m的取值范围。