袋中有大小相同的个白球和个黑球,从中任意摸出个,求下列事件发生的概率.(1)摸出个或个白球 (2)至少摸出一个黑球.
设函数 (1)当时,求的极值; (2)当时,求的单调区间; (3)当时,对任意的正整数,在区间上总有个数使得成立,试求正整数的最大值。
设椭圆的离心率,右焦点到直线的距离为坐标原点。 (I)求椭圆的方程; (II)过点作两条互相垂直的射线,与椭圆分别交于两点,证明点到直线的距离为定值,并求弦长度的最小值.
本着健康、低碳的生活理念,租自行车骑游的人越来越多。某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算)。有甲乙两人相互独立来该租车点租车骑游(各租一车一次),设甲、乙不超过两小时还车的概率分别为;两小时以上且不超过三小时还车的概率分别为;两人租车时间都不会超过四小时。 (Ⅰ)求出甲、乙两人所付租车费用相同的概率; (Ⅱ)设甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望;
如图甲,直角梯形中,,,点、分别在,上,且,,,,现将梯形沿折起,使平面与平面垂直(如图乙). (Ⅰ)求证:平面; (Ⅱ)当的长为何值时,二面角的大小为?
已知等差数列的前项和为,且 (1)求通项公式; (2)求数列的前项和