在一个不透明的口袋中,装着10个大小和外形完全相同的小球,其中有5 个红球,3个蓝球,2个黑球,把它们搅匀以后,请问:下列哪些事件是必然事件,哪些是不可能事件,哪些是不确定事件。(1)从口袋中任意取出一个球,它刚好是黑球。( )(2)从口袋中一次取出3个球,它们恰好全是蓝球。( )(3)从口袋中一次取出9个球,恰好红,蓝,黑三种颜色全齐。( )(4)从口袋中一次取出6个球,它们恰好是1个红球,2个蓝球,3个黑球。( )
经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,当三辆汽车经过这个十字路口时: (1)求三辆车全部同向而行的概率; (2)求至少有两辆车向左转的概率; (3)由于十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在此十字路口向右转的频率为,向左转和直行的频率均为.目前在此路口,汽车左转、右转、直行的绿灯亮的时间分别为30秒,在绿灯亮总时间不变的条件下,为了缓解交通拥挤,请你用统计的知识对此路口三个方向的绿灯亮的时间做出合理的调整.
如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上. (1)求证:BE=CE; (2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.
(1)计算: (2)化简求值:,其中.
如图所示,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把△AOB沿y轴翻折,点A落到点C,抛物线过点B、C和D(3,0). (1)求直线BD和抛物线的解析式. (2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标. (3)在抛物线上是否存在点P,使S△PBD=6?若存在,求出点P的坐标;若不存在,说明理由.
如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G. (1)求证:CG是⊙O的切线. (2)求证:AF=CF. (3)若∠EAB=30°,CF=2,求GA的长.