如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B两点,开口向下的抛物线经过点A,B,且其顶点P在⊙C上.(1)求∠ACB的大小;(2)写出A,B两点的坐标;(3)试确定此抛物线的解析式;(4)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.
正方形网格中,小格的顶点叫做格点。三个顶点都在网格格点上的三角形叫做格点三角形。小华已在左边的正方形网格中作出一个格点三角形。请你在其他两个正方形网格中各画出一个不同的格点三角形,使得三个网格中的格点三角形都相似(不包括全等).
已知关于的方程有实根. (1)求的值; (2)若关于的方程的所有根均为整数,求整数的值.
一个袋中有3张形状大小完全相同的卡片,编号为1,2,3,先任取一张,将其编号记为m,再从剩下的两张中任取一张,将其编号记为n. (1)请用树状图或者列表法,表示事件发生的所有可能情况; (2)求关于x的方程有两个不相等实数根的概率.
如图,为正方形对角线AC上一点,以为圆心,长为半径的⊙与相切于点. (1)求证:与⊙相切; (2)若⊙的半径为1,求正方形的边长.
如图,在△ABC中,,半圆的圆心O在AB上,且与AC,BC分别相切于点D, E. (1)求半圆O的半径; (2)求图中阴影部分的面积.