在平整的地面上,有若干个完全相同的小正方体堆成一个几何体,如图所示。请你画出它的主视图、左视图和俯视图。
下表给出了代数式与的一些对应值:
(1)请在表内的空格中填入适当的数; (2)设,则当取何值时,? (3)请说明经过怎样平移函数的图象得到函数的图象.
抛物线过点,顶点为M点. (1)求该抛物线的解析式; (2)试判断抛物线上是否存在一点P,使∠POM=90˚.若不存在,说明理由;若存在,求出P点的坐标; (3)试判断抛物线上是否存在一点K,使∠OMK=90˚,说明理由.
如图,为抛物线上对称轴右侧的一点,且点在轴上方,过点作垂直轴于点,垂直轴于点,得到矩形.若,求矩形的面积.
如图,已知抛物线经过,三点,且与轴的另一个交点为. (1)求抛物线的解析式; (2)用配方法求抛物线的顶点的坐标和对称轴; (3)求四边形的面积.
已知抛物线与直线相交于点. (1)求抛物线的解析式; (2)请问(1)中的抛物线经过怎样的平移就可以得到的图象? (3)设抛物线上依次有点,其中横坐标依次是,纵坐标依次为,试求的值.