已知直线与抛物线交于点A(1,),与轴交于点C.(1)求抛物线的解析式和点C的坐标;(2)把(1)中的抛物线向右平移2个单位,再向上平移个单位(>0),抛物线与轴交于P、Q两点,过C、P、Q三点的圆恰好以CQ为直径,求的值;(3)如图,把抛物线向右平移2个单位,再向上平移个单位(>0),抛物线与轴交于P、Q两点,过C、P、Q三点的圆的面积是否存在最小值?若存在,请求出这个最小值和此时的值;若不存在,请说明理由.
如图,在▱ABCD中,对角线AC,BD相交于点O,AC+BD=36,△ABO的周长为30,求AB的长.
如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒. (1)写出数轴上点B表示的数 ,点P表示的数 (用含t的代数式表示); (2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q? (3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.
龙马潭公园门票价格如下:购票张数 1﹣50张 51﹣100张 100张以上每张票价 10元 8元 6元七年级2个班共100人计划本周末去公园游玩.已知“七•一”班40多人、不足50人,两个年级各自以班为单位去购票,应付890元.(1)两个班各多少人?(2)两个班作为一个团体购票,最多能省多少钱?(3)若“七•一”班单独去,应该怎样购票才最省钱?
如图,已知O是直线AB上的一点,OD是∠AOC的平分线,OE是∠COB的平分线.(1)写出图中互补的角;(2)求∠DOE的度数.
用白铁皮做罐头盒,每张铁片可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?