解方程(每小题3分,共6分)(1)4x-3(20-2x)=10 (2)=1-
在一个不透明的袋中装有2个黄球,3个黑球和5个红球,它们除颜色外其他都相同.(1)将袋中的球摇均匀后,求从袋中随机摸出一个球是黄球的概率;(2)现在再将若干个红球放入袋中,与原来的10个球均匀混合在一起,使从袋中随机摸出一个球是红球的概率是,请求出后来放入袋中的红球的个数.
某校为了丰富学生的第二课堂,对学生参与演讲、舞蹈、书法和摄影活动的兴趣情况进行调查,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中最感兴趣的一项),对调查结果进行统计后,绘制了如下两个统计图: (1)此次调查抽取的学生人数m=名,其中选择"书法"的学生占抽样人数的百分比n=; (2)若该校有3000名学生,请根据以上数据估计该校对"书法"最感兴趣的学生人数.
补充完整三角形中位线定理,并加以证明:(1)三角形中位线定理:三角形的中位线 ;(2)已知:如图,DE是△ABC的中位线,求证:DE∥BC,DE=BC.
设,若代数式化简的结果为,请你求出满足条件的a值.
已知,抛物线y=ax2+bx+4(a≠0)与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点C.(1)求此抛物线的解析式;(2)如图1,点E是线段OB上一动点,过点E作DE⊥x轴,交抛物线于点D,若直线CD与以OE为直径的⊙M相切,试求出点E的坐标;(3)如图2,在抛物线上是否存在一点P,过点P作x轴的垂线,垂足为F,过点F作FG∥BC,交线段AC于点G,连接FC,使△BCF∽△CFG?若存在,求出点P的坐标;若不存在,请说明理由.