(本小题满分12分)已知数列和满足:,其中为实数,为正整数.(1)对任意实数,证明数列不是等比数列;(2)试判断数列是否为等比数列,并证明你的结论;(3)设,为数列的前项和.是否存在实数,使得对任意正整数,都有?若存在,求的取值范围;若不存在,说明理由.
已知两定点E(-2,0),F(2,0),动点P满足,由点P向x轴作垂线段PQ,垂足为Q,点M满足,点M的轨迹为C. (1)求曲线C的方程 (2)过点D(0,-2)作直线与曲线C交于A、B两点,点N满足 (O为原点),求四边形OANB面积的最大值,并求此时的直线的方程.
已知函数 (I)当a=18时,求函数的单调区间; (II)求函数在区间上的最小值.
已知函数. (1)求函数的单调区间 (2)函数的图象在处切线的斜率为若函数在区间(1,3)上不是单调函数,求m的取值范围
已知函数 (1)解关于的不等式 (2)若,的解集非空,求实数m的取值范围
在平面直角坐标系xOy中,以坐标原点O为极点x轴的正半轴为极轴建立极坐标系, 曲线C1的极坐标方程为: (1)求曲线C1的普通方程 (2)曲线C2的方程为,设P、Q分别为曲线C1与曲线C2上的任意一点,求|PQ|的最小值