如图,有一块塑料矩形模板ABCD,长为10cm,宽为4cm,将你手中足够大的直角三角板 PHF的直角顶点P落在AD边上(不与A、D重合),在AD上适当移动三角板顶点P:①能否使你的三角板两直角边分别通过点B与点C?若能,请你求出这时 AP的长;若不能,请说明理由;②再次移动三角板位置,使三角板顶点P在AD上移动,直角边PH始终通过点B,另一直角边PF与DC的延长线交于点Q,与BC交于点E,能否使CE=2cm?若能,请你求出这时AP的长;若不能,请你说明理由.
以原点为极点,以轴的正半轴为极轴建立极坐标系,已知曲线,过点的直线的参数方程为,设直线与曲线分别交于; (1)写出曲线和直线的普通方程; (2)若成等比数列,求的值.
已知甲、乙、丙等6人 . (1)这6人同时参加一项活动,必须有人去,去几人自行决定,共有多少种不同的去法? (2)这6人同时参加6项不同的活动,每项活动限1人参加,其中甲不参加第一项活动,乙不参加第三项活动,共有多少种不同的安排方法? (3)这6人同时参加4项不同的活动,求每项活动至少有1人参加的概率.
如图,已知抛物线的焦点在抛物线上. (Ⅰ)求抛物线的方程及其准线方程; (Ⅱ)过抛物线上的动点作抛物线的两条切线、, 切点为、.若、的斜率乘积为,且,求的取值范围.
已知函数,. (Ⅰ)若,求函数的极值; (Ⅱ)若函数在上有极值,求的取值范围.
如图,在四棱锥P-ABCD中,PA⊥平面ABCD, AB//CD,∠DAB=90°,PA=AD=DC=1,AB=2,M为PB的中点. (I)证明:MC//平面PAD; (II)求直线MC与平面PAC所成角的余弦值.