如图,在梯形ABCD中,,对角线AC、BD交于点O,,请说明四边形ABCD为等腰梯形.
把下列各数填在相应的表示集合的大括号内。-2,π,,,,-0.3,1.7,,0,1.1010010001……(两个“1”之间依次多一个“0”)整 数{ ……}分 数{ ……}无理数{ ……}
在数轴上近似地表示下列各数,π,,0,-,并用“<”把它们连接起来。
如图(1),矩形ABCD的一边BC在直角坐标系中x轴上,折叠边AD,使点D落在x轴上点F处,折痕为AE,已知AB=8,AD=10,并设点B坐标为(m,0),其中m>0.(1)求点E、F的坐标(用含m的式子表示);(2)连接OA,若△OAF是等腰三角形,求m的值;(3)如图(2),设抛物线经过A、E两点,其顶点为M,连接AM,若∠OAM=90°,求a、h、m的值.
已知:正方形ABCD中,,绕点顺时针旋转,它的两边分别交(或它们的延长线)于点.(1)当绕点旋转到时(如图1),求证:;(2)当绕点旋转到时(如图2),则线段和之间数量关系是 ;(3)当绕点旋转到如图3的位置时,猜想线段和之间又有怎样的的数量关系呢?并对你的猜想加以说明.
某商场将进价40元一个的某种商品按50元一个售出时,每月能卖出500个.商场想了两个方案来增加利润:方案一:提高价格,但这种商品每个售价涨价1元,销售量就减少10个;方案二:售价不变,但发资料做广告。已知当这种商品每月的广告费用为m(千元)时,每月销售量将是原销售量的p倍,且p = .试通过计算,请你判断商场为赚得更大的利润应选择哪种方案?请说明你判断的理由!