(本小题满分12分)点为椭圆内的一定点,过P点引一直线,与椭圆相交于两点,且P恰好为弦AB的中点,如图所示,求弦AB所在的直线方程及弦AB的长度。
已知是函数的一个极值点。(1)求; (2)求函数的单调区间;(3)若直线与函数的图象有3个交点,求的取值范围。
(12)设焦点在轴上的双曲线渐近线方程为,且离心率为2,已知点A()(1)求双曲线的标准方程;(2)过点A的直线L交双曲线于M,N两点,点A为线段MN的中点,求直线L方程。
函数,过曲线上的点的切线斜率为3.(1)若在时有极值,求f (x)的表达式;(2)在(1)的条件下,求在上最大值;
设p: 实数,q:实数满足,且的必要不充分条件,求的取值范围。
已知点在以坐标轴为对称轴的椭圆上,点到两焦点的距离分别为4和2,过点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.