如图,棱锥P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=. (1)求证:BD⊥平面PAC; (2)求二面角P—CD—B余弦值的大小 (3)求点C到平面PBD的距离.
(本小题满分6分)已知(),函数,且的最小正周期为,(1)求的值;(2)求的单调区间.
已知椭圆的上顶点为,左右焦点分别为,直线与圆:相切,若椭圆上点使得成等比数列求
为椭圆上任一点(不是长轴顶点),过点的切线与过长轴顶点与长轴垂直的直线相交于点,求证以线段为直径的圆过这个椭圆的两个焦点
在第一象限,且是椭圆上的一点,△的内切圆半径是,求的坐标
已知为椭圆的左右焦点,抛物线以为顶点,为焦点,设为椭圆与抛物线的一个交点,椭圆离心率为,且,求的值