已知等差数列中,.(Ⅰ)求的通项公式;(Ⅱ)调整数列的前三项的顺序,使它成为等比数列的前三项,求的前项和.
已知两点,点为坐标平面内的动点,且满足.(Ⅰ)求点的轨迹的方程;(Ⅱ)设过点的直线斜率为,且与曲线相交于点、,若、两点只在第二象限内运动,线段的垂直平分线交轴于点,求点横坐标的取值范围.
已知函数,直线与函数图象相切.(Ⅰ)求直线的斜率的取值范围;(Ⅱ)设函数,已知函数的图象经过点,求函数的极值.
从7个不同的红球,3个不同的白球中取出4个球,问:(1)一共有多少种不同的取法?(2)其中恰有一个白球的取法有多少种?(3)其中至少有两个白球的取法有多少种?
⑴当时,求函数的值域;⑵若函数在定义域上是减函数,求的取值范围;⑶求函数在x∈(0,1]上的最大值及最小值,并求出函数取最值时的值