(本小题满分12分)如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为直角梯形,AB∥CD,BA⊥AD,且CD=2AB.(1)若AB=AD=,直线PB与CD所成角为,①求四棱锥P-ABCD的体积;②求二面角P-CD-B的大小;(2)若E为线段PC上一点,试确定E点的位置,使得平面EBD垂直于平面ABCD,并说明理由.
(本小题满分为12分)设(Ⅰ)若在上存在单调递增区间,求取值范围;(Ⅱ)当时,在上的最小值为,求在该区间上的最大值.
(本小题满分为12分)椭圆的左、右焦点分别为上顶点为,在轴负半轴上有一点,满足(Ⅰ)求椭圆的离心率.(Ⅱ)是过三点的圆上的点,到直线的最大距离等于椭圆长轴的长,求椭圆的方程.
(本小题满分为12分)某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六组:, ,,后得到如图的频率分布直方图.(Ⅰ)求图中实数的值;(Ⅱ)若该校高一年级共有学生500人,试估计该校高一年级在考试中成绩不低于60分的人数;(Ⅲ)若从样本中数学成绩在与两个分数段内的学生中随机选取两名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率.
(本小题满分为12分)已知四棱锥P—ABCD及其三视图如下图所示,E是侧棱PC上的动点。(Ⅰ)求四棱锥P—ABCD的体积;(Ⅱ)不论点E在何位置,是否都有BDAE?试证明你的结论;(Ⅲ)若点E为PC的中点,求二面角D—AE—B的大小。
(本小题满分为10分)在数列中,(Ⅰ)求的值;(Ⅱ)证明:数列是等比数列,并求的通项公式