某水产试验厂实行某种鱼的人工孵化,10000个鱼卵能孵出8513尾鱼苗,根据概率的统计定义解答下列问题:(1)求这种鱼卵的孵化概率(孵化率);(2)30000个鱼卵大约能孵化多少尾鱼苗?(3)要孵化5000尾鱼苗,大概得备多少鱼卵?(精确到百位)
如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.
选用适当的方法解下列方程:(1) (2)
把两块全等的直角三角形和叠放在一起,使三角板的锐角顶点与三角板的斜边中点重合,其中,,,把三角板固定不动,让三角板绕点旋转,设射线与射线相交于点,射线与线段相交于点.(1)如图1,当射线经过点,即点与点重合时,易证.此时, ;将三角板由图1所示的位置绕点沿逆时针方向旋转,设旋转角为.其中,问的值是否改变?答: (填“会”或“不会”);若改变,的值为 (不必说明理由);(2)在(1)的条件下,设,两块三角板重叠面积为,求与的函数关系式.(图2,图3供解题用)
某瓜果基地市场部为指导该基地某种蔬菜的生产和销售,对往年的市场行情和生产情况进行了调查,提供了如下两个信息图,如甲、乙两图。注:甲、乙两图中的A、B、C、D、E、F、G、H所对应的纵坐标分别指相应月份每千克该种蔬菜的售价和成本(生产成本6月份最低,甲图的图象是线段,乙图的图象是抛物线的一部分)。请你根据图象提供的信息说明:(1)在3月份出售这种蔬菜,每千克的收益是多少元?(收益=售价-成本)(2)哪个月出售这种蔬菜,每千克的收益最大?最大收益是多少?说明理由。
如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)试判断线段BD与CD的大小关系;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论;(3)若△ABC为直角三角形,且∠BAC=90°时,判断四边形AFBD的形状,并说明理由.