(本小题共13分)已知圆过两点(1,-1),(-1,1),且圆心在上.(1)求圆的方程;(2)设是直线上的动点,、是圆的两条切线,、为切点,求四边形面积的最小值.
如图,三棱柱的底面是边长为的正三角形,侧棱垂直于底面,侧棱长为,D为棱的中点。(Ⅰ)求证:平面;(Ⅱ)求二面角的大小.
为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从三个区中抽取6个工厂进行调查.已知区中分别有27,18,9个工厂.(Ⅰ)求从区中应分别抽取的工厂个数;(Ⅱ)若从抽得的6个工厂中随机地抽取2个进行调查结果的对比,求这2个工厂中至少有1个来自区的概率.
在中,角,,的对边为,,且;(Ⅰ)求的值;(Ⅱ)若,,求的值.
已知坐标平面内:,:.动点P与外切与内切.(1)求动圆心P的轨迹的方程;(2)若过D点的斜率为2的直线与曲线交于两点A、B,求AB的长;(3)过D的动直线与曲线交于A、B两点,线段中点为M,求M的轨迹方程.
设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6, 且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.(1)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(2)记表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求的分布列及期望.