已知 是关于x的方程 的两个实根,且,求m的值.
如图,抛物线的顶点为M,对称轴是直线x=1,与x轴的交点为A(-3,0)和B.将抛物线绕点B逆时针方向旋转90°,点M1,A1为点M,A旋转后的对应点,旋转后的抛物线与y轴相交于C,D两点.(1)写出点B的坐标及求抛物线的解析式:(2)求证:∠AMA1=180°(3)设点P是旋转后抛物线上DM1之间的一动点,是否存在一点P,使四边形PM1MD的面积最大.如果存在,请求出点P的坐标及四边形PM1MD的最大面积;如果不存在,请说明理由.
如图,抛物线经过点A(1,0),与y轴交于点B.(1)求抛物线的解析式;(2)P是y轴上一点,且△PAB是以AB为腰的等腰三角形,试求P点坐标.将抛物线沿着坐标轴方向经过怎样的一次平移可以使它使它经过原点.
一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:
(1)求y与x的函数关系式; (2)该批发商若想获得4000元的利润,应将售价定为多少元? (3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为 多少元?
在全运会射击比赛的选拔赛中,运动员甲10次射击成绩的统计表和扇形统计图如下:
(1)根据统计表(图)中提供的信息,补全统计表及扇形统计图; (2)已知乙运动员10次射击的平均成绩为9环,方差为1.2,如果只能选一人参加比赛,你认为应该派谁去?并说明理由.
在一个不透明的袋中装有2个黄球,3个黑球和5个红球,它们除颜色外其他都相同.(1)将袋中的球摇均匀后,求从袋中随机摸出一个球是黄球的概率;(2)现在再将若干个红球放入袋中,与原来的10个球均匀混合在一起,使从袋中随机摸出一个球是红球的概率是,请求出后来放入袋中的红球的个数.