如果若干个函数的图象经过平移后能够重合,则称这些函数为“互为生成函数”。给出下列函数①;②;③;④其中“互为生成函数”的是( )
用数学归纳法证明:1+2+22+…2n﹣1=2n﹣1(n∈N)的过程中,第二步假设当n=k时等式成立,则当n=k+1时应得到()
证明1++…+(n∈N*),假设n=k时成立,当n=k+1时,左端增加的项数是()
利用数学归纳法证明“(n+1)(n+2)…(n+n)=2n×1×3×…×(2n﹣1),n∈N*”时,从“n=k”变到“n=k+1”时,左边应增乘的因式是()
用数学归纳法证明不等式“++…+>(n>2)”时的过程中,由n=k到n=k+1时,不等式的左边()
某个命题与自然数n有关,若n=k(k∈N*)时命题成立,那么可推得当n=k+1时该命题也成立.现已知当n=5时,该命题不成立,那么可推得()